# **Residential Series**

**Battery Storage Solutions** 

## FOR EU MARKET



## Renon Power Technology Inc.

© Renon Power Technology Inc. All Rights Reserved Specifications are subject to change without notice. 2025-4-22



## **Renon** Power

## We Care About Sustainability

With our own R&D team and automated production factory, we are dedicated to delivering innovative, reliable, and affordable energy storage solutions to customer globally.

At Renon, we believe that sustainable energy is the future. We are passionate about reducing carbon emissions and preserving our planet for future generations. That's why we invest heavily in research and development, leveraging the latest technologies to design and manufacture energy storage systems that are efficient, scalable, and adaptable.

Our products are designed to meet the needs of a wide range of applications, from residential and commercial buildings to industrial facilities and utility-scale projects. Whether you're looking to reduce your energy bills, increase your energy independence, or support your sustainability goals, Renon has the right solution for you.

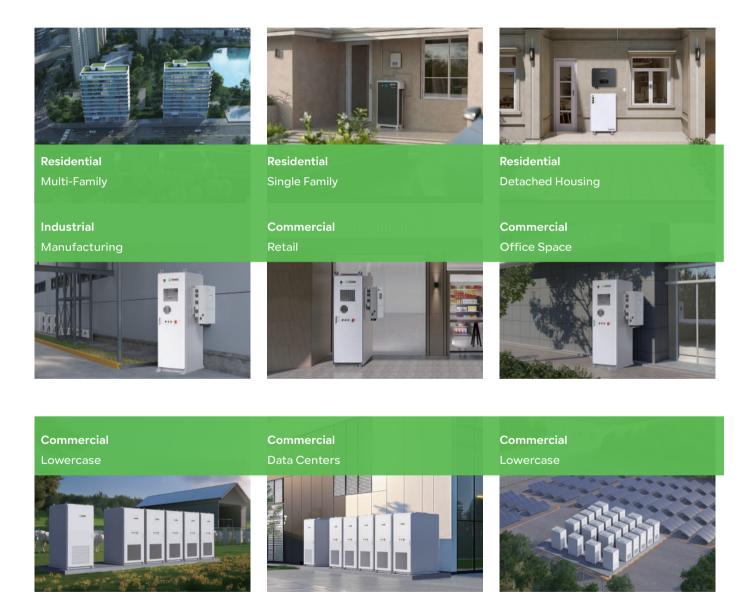
Our commitment to quality and customer satisfaction is unwavering. We work closely with our clients to understand their unique needs and provide customized solutions that meet or exceed their expectations. We also provide comprehensive technical support, maintenance, and warranty services to ensure that our customers get the most out of their investment.

## JOIN US ON OUR MISSION TO MAKE RENEWABLE ENERGY WITHIN REACH.

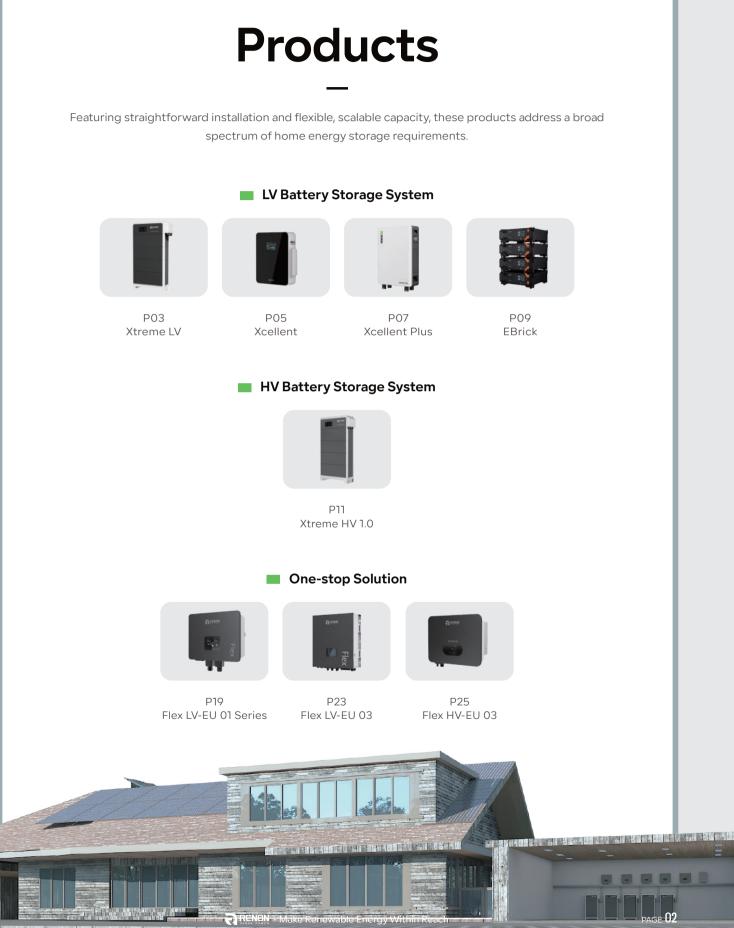
PROVIDE INNOVATIVE, RELIABLE, AND AFFORDABLE ENERGY STORAGE SOLUTIONS TO CUSTOMERS WORLDWIDE.



## Content


Meeting the highest standards of quality and safety in the global market.

| Industry Application | 01 |
|----------------------|----|
| Products             | 02 |
| Solution             | 27 |
| Renon Smart          | 28 |
| Installation Cases   | 30 |
| Renon Exhibition     | 31 |




# **Industry** Application

Renon's energy storage products are extensively applied across residential, commercial, and industrial sectors. With exceptional performance, cutting-edge technology, and efficient energy management, they provide reliable, innovative, and eco-friendly energy solutions, helping global users achieve their sustainability goals.



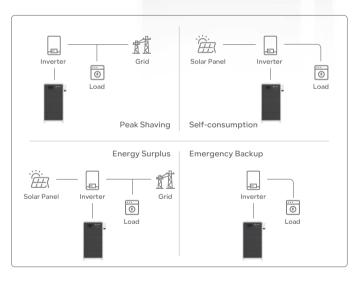
As a company that values renewable energy, we are passionate about developing solutions that contribute to a greener, more sustainable future. Our products are designed to reduce carbon emissions and promote environmental conservation.



## **Xtreme LV**

## Modular LV Battery System

Scalability: The system can be expanded with up to 30 systems in parallel, offering flexibility and future-proofing for growing energy needs.


**High Efficiency:** Designed for peak shaving and self-consumption, it helps reduce energy bills by optimizing the use of solar power and minimizing reliance on the grid.

**Strong Compatibility:** The system is designed to work seamlessly with various inverters and energy management systems, providing flexibility in integration with existing setups.

**Comprehensive Warranty:** Backed by a 10-year warranty, the Xtreme LV system assures long-term peace of mind and protection for the investment.

Wi-Fi Connectivity and APP Control: Enables remote monitoring and management of the energy storage system through a dedicated mobile application, enhancing user convenience and control.

## Master Control Module Harness Connection Interface Battery Module



### Application Scenario

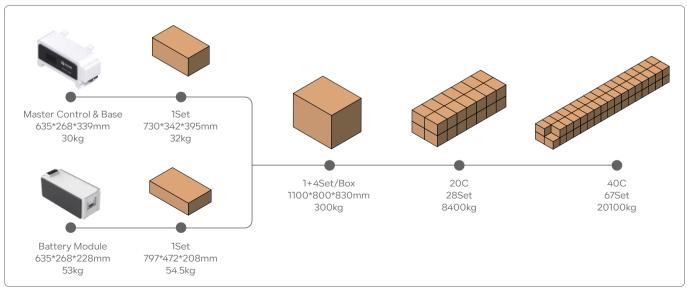
Product Details



Battery Base



RENON


#### System Layout

| Battery Energy Storage(48/51.2V) | 2 Modules                       | 3 Modules                        | 4 Modules                        | 5 Modules                        | 6 Modules                        |
|----------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Product Model (48V)              | R-XL009021                      | R-XL014031                       | R-XL019021                       | R-XL024021                       | R-XL028021                       |
| Product Model (51.2V)            | R-XL010021                      | R-XL015031                       | R-XL020041                       | R-XL025051                       | R-XL030061                       |
| Nominal Energy (kWh)             | 9.6/10.24                       | 14.4/15.36                       | 19.2/20.48                       | 24/25.6                          | 28.8/30.72                       |
| Output Power (kW)                | 9.1/9.7                         | 13.7/14.6                        | 14.4/15.4                        | 14.4/15.4                        | 14.4/15.4                        |
| Max. Operation Current (A)       | 190                             | 285                              | 300                              | 300                              | 300                              |
| Peak for 10s (A)                 | 196                             | 297                              | 392                              | 490                              | 500                              |
| Peak for 2s (A)                  | 240                             | 360                              | 480                              | 500                              | 500                              |
| Max. Charging Voltage (Vdc)      |                                 |                                  | 54.75/58.4                       |                                  |                                  |
| Discharge Cut-off (Vdc)          | 40.5/43.2                       |                                  |                                  |                                  |                                  |
| Nominal Voltage (Vdc)            | 48/51.2                         |                                  |                                  |                                  |                                  |
| Recommend Charging Voltage(Vdc)  | 53.25/56.8                      |                                  |                                  |                                  |                                  |
| Battery Chemistry                |                                 |                                  | LiFePO4                          |                                  |                                  |
| Dimension (W*D*H)                | 635*268*795mm<br>25*10.6*31.3in | 635*268*1023mm<br>25*10.6*40.3in | 635*268*1250mm<br>25*10.6*49.2in | 635*268*1478mm<br>25*10.6*58.2in | 635*268*1705mm<br>25*10.6*67.1in |
| Net Weight (Approximate)         | 139/141kg<br>306/3111b          | 192/194kg<br>423/428lb           | 245/247kg<br>540/545lb           | 298/300kg<br>656/661lb           | 351/353kg<br>773/778lb           |

| General Parameters    |                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------|
| Scalability           | Max. 15 systems in parallel                                                             |
| Storage Conditions    | –20°C ~ 55°C(0°C ~ 35°C Recommended)<br>Up to 90%RH, non-condensing<br>Initial SoC: 50% |
| Operating Temperature | Charge: 0°C ~ 50°C<br>Discharge: -20°C ~ 50°C                                           |
| Cooling               | Natural Cooling                                                                         |
| Max. Altitude         | 4000m / 13123ft                                                                         |
| Cycle Life            | 8000 Cycles                                                                             |
| Communication         | RS485, CAN, WiFi                                                                        |

| System Characteristic |                                                                                              |
|-----------------------|----------------------------------------------------------------------------------------------|
| Master Control Model  | R-MC300-XTL01                                                                                |
| Battery Model         | R-EM51100-XTL01                                                                              |
| Battery Compliances   | UL1973,UL9540, UL9540A<br>UKCA, IEC 62619, IEC62040<br>CEI 0-21, UN 38.3, EN-61000, EN-62311 |
| Installation Method   | Stack Mounting                                                                               |
| Installation Scene    | Indoor or Outdoor                                                                            |
| IP Rating             | IP65                                                                                         |
| Warranty [1]          | 10 Years                                                                                     |

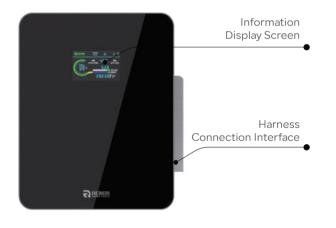
[1] Please refer to the warranty letter for details



## Packaging & Shipping Details

## Xcellent

## Wall-Mounted LV Battery System


**Safe and Stable LFP Technology:** The Xcellent series uses Lithium Iron Phosphate (LFP) battery chemistry, known for its safety, stability, and long lifespan, ensuring reliable performance.

**Minimalist and Compact Design:** The Xcellent batteries feature a minimalist, noise-free design that can be seamlessly integrated into various residential settings, both indoor and outdoor.

**High Compatibility and Flexibility:** The Xcellent series is designed to be highly compatible with various inverters and can be easily scaled to meet different energy storage needs, from small residential setups to larger installations.



Product Details



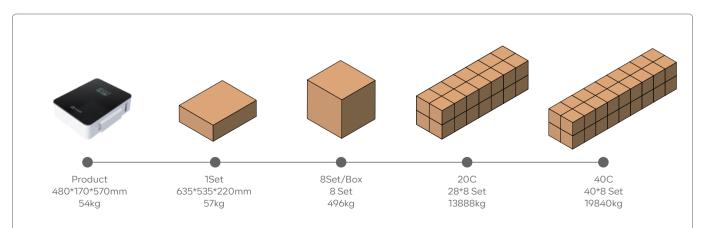
#### Ħ Ì .e. Inverter Grid Solar Panel Inverte ... © 6 Load Load Peak Shaving Self-consumption Energy Surplus Emergency Backup T I -=-Solar Panel Grid Inverter Inverter ... (6) ... (6) Load Load

### Application Scenario








## System Layout

#### Battery Energy Storage

| Battery Chemistry                    | LiFePO4                          |
|--------------------------------------|----------------------------------|
| Cell Capacity (Ah)                   | 100                              |
| Nominal Energy (kWh)                 | 5.12                             |
| Output Power (kW)                    | 4.8                              |
| Default Voltage (V)                  | 51.2                             |
| Voltage Range (V)                    | 43.2 ~ 59.2                      |
| Max. Operation Current (A)           | 95                               |
| Primary Overcurrent Protection (A)   | 98@10S                           |
| Secondary Overcurrent Protection (A) | 120@25                           |
| Max. Charging Voltage (V)            | 58.4                             |
| Discharge Cut-off (V)                | 43.2                             |
| Recommended Charging Voltage (V)     | 56.8                             |
| Dimension (W*D*H)                    | 480*170*570mm<br>18.9*6.7*22.4in |
| Net Weight (Approximate)             | 54kg<br>119lb                    |

| General Parameters    |                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------|
| Scalability           | Max. 31 systems in parallel                                                             |
| Storage Conditions    | –20°C ~ 55°C(0°C ~ 35°C Recommended)<br>Up to 90%RH, non-condensing<br>Initial SoC: 50% |
| Operating Temperature | Charge: 0°C ~ 50°C<br>Discharge: -20°C ~ 50°C                                           |
| Cooling               | Natural Cooling                                                                         |
| Max. Altitude         | 4000m / 13123ft                                                                         |
| Cycle Life            | 8000 Cycles                                                                             |
| Communication         | RS485, CAN, WiFi                                                                        |
| System Characteristic |                                                                                         |
| Battery Model         | R-XC005161                                                                              |
| Battery Compliances   | IEC 62619, UN 38.3, UL1973<br>UKCA, CEI 0-21, EN-62311, EN-61000                        |
| Installation Method   | Wall-Mounting                                                                           |
| Installation Scene    | Indoor                                                                                  |
| IP Rating             | IP20                                                                                    |
| Warranty [1]          | 10 Years                                                                                |

[1] Please refer to the warranty letter for details



## Packaging & Shipping Details

## **Xcellent Plus**

## Wall-Mounted LV Battery System

**Dependable Safety:** Designed with a high level of safety features, including dependable lithium iron phosphate (LiFePO4) technology, ensuring safe and stable operation.

Sleek Aesthetics: Modern and sleek design that integrates seamlessly into residential environments, enhancing the aesthetic appeal of installation areas.

Whisper-Quiet Operation: Engineered for silent operation, making it ideal for home settings where noise levels need to be minimal.

Versatile Compatibility: Compatible with various inverters and energy systems, allowing for flexible integration with existing home energy setups.

Long Cycle Life: Offers an impressive cycle life of up to 8000 cycles, providing long-term reliability and cost-effectiveness.



### Product Details



#### Ħ Ĥ -63-Inverter Grid Solar Pane Inverte ···· ⑦ ... © Load Load i. Peak Shaving Self-consumption Energy Surplus Emergency Backup Ĥ TI. -2--**D**-Solar Panel Grid Inverter Inverter ... (6) 6 Load Load

### Application Scenario







### System Layout

#### Battery Energy Storage

| Battery Chemistry                    | LiFePO4                        |
|--------------------------------------|--------------------------------|
| Cell Capacity (Ah)                   | 314                            |
| Nominal Energy (kWh)                 | 16                             |
| Output Power (kW)                    | 10.2                           |
| Default Voltage (V)                  | 51.2                           |
| Voltage Range (V)                    | 43.2 ~ 59.2                    |
| Max. Operation Current (A)           | 200                            |
| Primary Overcurrent Protection (A)   | 210@10S                        |
| Secondary Overcurrent Protection (A) | 250@500mS                      |
| Max. Charging Voltage (V)            | 58.4                           |
| Discharge Cut-off (V)                | 43.2                           |
| Recommended Charging Voltage (V)     | 56.8                           |
| Dimension (W*D*H)                    | 560*200*800mm<br>22*7.8*31.5in |
| Net Weight (Approximate)             | 126kg<br>278lb                 |

| General Parameters    |                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------|
| Scalability           | Max. 15 systems in parallel                                                             |
| Storage Conditions    | –20°C ~ 55°C(0°C ~ 35°C Recommended)<br>Up to 90%RH, non-condensing<br>Initial SoC: 50% |
| Operating Temperature | Charge: 0°C ~ 50°C<br>Discharge: -20°C ~ 50°C                                           |
| Cooling               | Natural Cooling                                                                         |
| Max. Altitude         | 4000m / 13123ft                                                                         |
| Cycle Life            | 8000 Cycles                                                                             |
| Communication         | RS485, CAN, RS232                                                                       |
| System Characteristic |                                                                                         |
| Battery Model         | R-XC016161                                                                              |
| Battery Compliances   | IEC 62619, UN 38.3, CEI 0-21, EN-61000                                                  |
| Installation Method   | Wall-Mounting or Floor Mounting                                                         |
| Installation Scene    | Indoor or Outdoor                                                                       |
| IP Rating             | IP65                                                                                    |
| Warranty [1]          | 10 Years                                                                                |

[1] Please refer to the warranty letter for details

## Packaging & Shipping Details

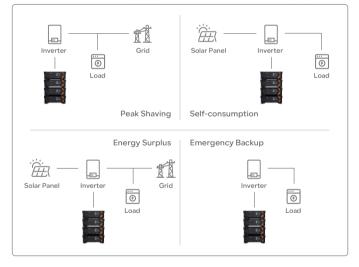


## **EBrick**

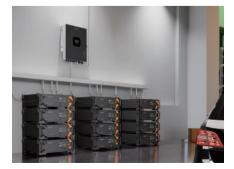
## **Rack Mounted LV Battery System**

**Modular Design and Easy Installation:** EBrick's rack-mount design allows for customizable and simple installation, with the flexibility to connect multiple units in parallel. This reduces installation time and costs.

Wi-Fi Connectivity and App Control: EBrick features Wi-Fi connectivity, enabling users to remotely monitor and control the system via a dedicated app. This enhances user experience with real-time monitoring and efficient system management.


**Stable LiFePO4 Battery Technology:** EBrick uses reliable lithium iron phosphate (LiFePO4) batteries, offering up to 8000 cycles. Its efficient battery management system ensures high performance and safety.




#### Product Details



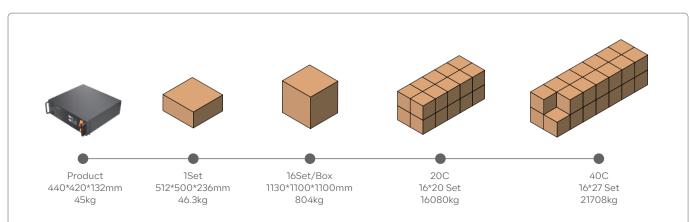
#### System Layout



#### Application Scenario








#### Battery Energy Storage

| Battery Chemistry                    | LiFePO4                          |
|--------------------------------------|----------------------------------|
| Cell Capacity (Ah)                   | 100                              |
| Nominal Energy (kWh)                 | 5.12                             |
| Output Power (kW)                    | 4.8                              |
| Default Voltage (V)                  | 51.2                             |
| Voltage Range (V)                    | 43.2 ~ 59.2                      |
| Max. Operation Current (A)           | 95                               |
| Primary Overcurrent Protection (A)   | 98@10S                           |
| Secondary Overcurrent Protection (A) | 120@30mS                         |
| Max. Charging Voltage (V)            | 58.4                             |
| Discharge Cut-off (V)                | 43.2                             |
| Recommended Charging Voltage (V)     | 56.8                             |
| Dimension (W*D*H)                    | 440*420*132mm<br>17.3*16.5*5.2in |
| Net Weight (Approximate)             | 45kg<br>99.21b                   |

| General Parameters    |                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------|
| Scalability           | Max. 31 systems in parallel                                                             |
| Storage Conditions    | –20°C ~ 55°C(0°C ~ 35°C Recommended)<br>Up to 90%RH, non-condensing<br>Initial SoC: 50% |
| Operating Temperature | Charge: 0°C ~ 50°C<br>Discharge: -20°C ~ 50°C                                           |
| Cooling               | Natural Cooling                                                                         |
| Max. Altitude         | 4000m / 13123ft                                                                         |
| Cycle Life            | 8000 Cycles                                                                             |
| Communication         | RS485, CAN, WiFi                                                                        |
| System Characteristic |                                                                                         |
| Battery Model         | R-EB005161                                                                              |
| Battery Compliances   | UL1973, UL9540A, IEC 62619, UN 38.3<br>CEI 0-21, UKCA, EN-61000, EN-62311               |
| Installation Method   | Rack Mounting                                                                           |
| Installation Scene    | Indoor                                                                                  |
| IP Rating             | IP20                                                                                    |
| Warranty [1]          | 10 Years                                                                                |

[1] Please refer to the warranty letter for details



## Packaging & Shipping Details

## Xtreme HV 1.0

## **Modular HV Battery System**

High Efficiency and Scalability: The high voltage system offers a nominal voltage of 204.8~614.4V, reducing transmission losses, and its modular design provides 2 to 6 module stacking solutions, ensuring high operational reliability with dynamic current equalizing techniques.

Advanced Smart Management: Wireless design with Wi-Fi connectivity, and the intelligent energy management system (EMS) allow for easy activation, unified management, and real-time monitoring and fault pre-warning.

Superior Safety and Durability: With a built-in battery optimizer, up to 8000 cycle life, IP55 protection rating, and comprehensive certifications, the system ensures long-term stable operation and global safety compliance.

User-Friendly Integrated Solutions: The integration with Renon Flex Inverter eliminates the need for additional third-party inverters, and the 10-year warranty enhances user confidence and satisfaction.

### Product Details



#### Ħ Ĥ Ŀ Leo. Inverter Grid Solar Pane Inverte ··· ⑦ 1 Load Load Peak Shaving Self-consumption Energy Surplus Emergency Backup Ĥ TI. ------E-Solar Panel Grid Inverter Inverter ... © 6 Load Load

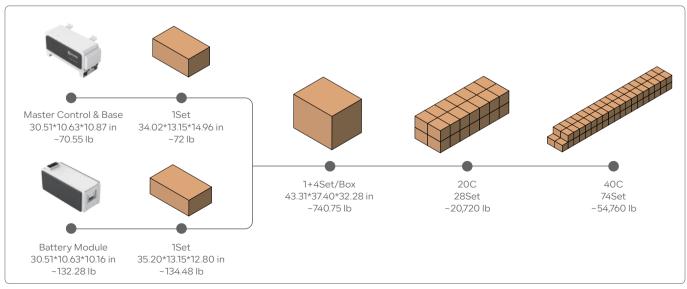
### Application Scenario







### System Layout




| Battery Energy Storage     |                   |                   |                   |                   |                   |
|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Product Model              | R-XH009021        | R-XH014031        | R-XH019041        | R-XH024051        | R-XH028061        |
| Product Module QTY         | 2                 | 3                 | 4                 | 5                 | 6                 |
| Battery Chemistry          |                   |                   | LiFePO4           |                   |                   |
| Battery Combination        | 1P60S             | 1P90S             | 1P120S            | 1P120S            | 1P150S            |
| Cell Capacity (Ah)         |                   |                   | 50                |                   |                   |
| Nominal Energy (kWh)       | 9.6               | 14.4              | 19.2              | 24                | 28.8              |
| Nominal Power (kW)         | 9.216             | 13.824            | 18.432            | 230.4             | 27.648            |
| Nominal Voltage (V)        | 192               | 288               | 384               | 480               | 576               |
| Max. Charging Voltage (A)  | 219               | 328.2             | 438               | 547.5             | 657               |
| Recommend Discharge Cut-of | ff Voltage 175.8  | 263.7             | 351.6             | 439.5             | 527.4             |
| Dimensions - W*D (mm/in)   | 775*270/30.5*10.6 | 775*270/30.5*10.6 | 775*270/30.5*10.6 | 775*270/30.5*10.6 | 775*270/30.5*10.6 |
| Dimensions - H (mm/in)     | 854/33.6          | 1112/43.8         | 1370/53.9         | 1628/64           | 1886/74.1         |
| Total Weight - (kg/lb)     | 152/335           | 212/467           | 272/599           | 332/731           | 392/863           |
|                            |                   |                   |                   |                   |                   |

| General Parameters    |                                                                                          |
|-----------------------|------------------------------------------------------------------------------------------|
| Scalability           | Max. 5 cluster in parallel                                                               |
| Storage Conditions    | –4°F ~ 131°F(32°F ~ 95°F Recommended)<br>Up to 90%RH, non-condensing<br>Initial SoC: 50% |
| Operating Temperature | Charge: 32°F ~ 122°F<br>Discharge: –4°F ~ 122°F                                          |
| Cooling               | Natural Cooling                                                                          |
| Max. Altitude         | 4000m / 13123ft                                                                          |
| Cycle Life            | 8000 Cycles                                                                              |
| Communication         | RS485, CAN, WiFi                                                                         |

| System Characteristic |                                                                   |
|-----------------------|-------------------------------------------------------------------|
| Master Control Model  | R-MC050-XTH01                                                     |
| Battery Model         | R-EM102050-XTH01                                                  |
| Battery Compliances   | IEC62619, MSDS, UN38.3<br>UL 1973, UL 9540, UL 9540A(Coming soon) |
| Installation Method   | Stack Mounting                                                    |
| Installation Scene    | Indoor or Outdoor                                                 |
| IP Rating             | IP55                                                              |
| Warranty [1]          | 10 Years                                                          |

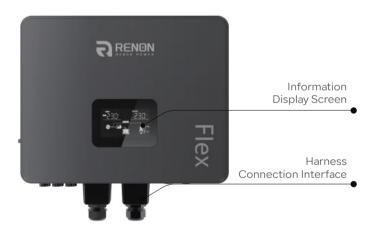
[1] Please refer to the warranty letter for details

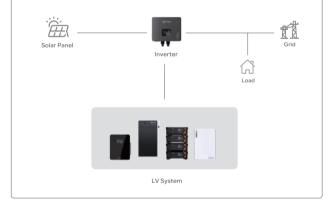


## Packaging & Shipping Details

## Flex LV-EU 01

## LV Single-phase Hybrid Inverter


**Integrated Design:** Renon Power's Flex LV-EU 01 series includes a built-in Renon Flex inverter, eliminating the need for third-party inverters. Users can monitor and control the system through the Renon Smart app, simplifying the user experience.


**Easy Installation and Expansion:** The system supports stackable modules without cables, simplifying installation. It allows easy expansion to meet future energy needs, and its compact design saves space.

**Durability and User-Friendly:** With an IP65 protection rating, the Flex LV-EU 01 series is water and dust resistant. It offers mobile access for setup and maintenance, customizable charging profiles, and remote firmware upgrades, enhancing user experience and efficiency.



#### Product Details





### Application Scenario







## System Layout

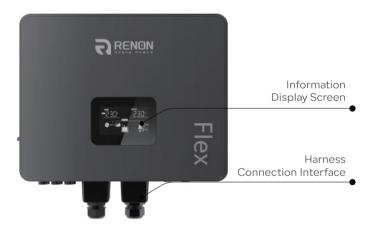
| Model                               |                           |                 |                    |                     |                |                     |               |
|-------------------------------------|---------------------------|-----------------|--------------------|---------------------|----------------|---------------------|---------------|
| Inverter Model                      | R-IFL03-EU01              | R-IFL03a-EU01   | R-IFL04-EU01       | R-IFL04a-EU01       | R-IFL05-EU01   | R-IFL06-EU01        | R-IFL08-EU01  |
| Interface                           | RS485, Wifi, 4G, CAN, DRM |                 |                    |                     |                |                     |               |
| Certifications                      | C10/11,                   | VDE, EMC, EN505 | 549-1, IEC 62109-1 | /IEC 62109-2, EN6   | 2109-1/EN62109 | -2, CE, G99, G98, ( | CEI 0-21      |
| PV Input                            |                           |                 |                    |                     |                |                     |               |
| Max. Input Power (kW)               | 4.5                       | 5.4             | 6                  | 6.9                 | 7.5            | 9                   | 12            |
| Start-up Voltage (V)                |                           |                 |                    | 100                 |                |                     |               |
| Max. PV Input Voltage(V)            |                           |                 |                    | 550                 |                |                     |               |
| MPPT Range/nominal (V)              |                           |                 |                    | 80~500/360          |                |                     |               |
| Max.Input Current of Single MPPT(A) | 16/16                     | 16/16           | 16/16              | 16/16               | 16/16          | 16/16               | 16/32         |
| MPPT Tracker Quantity               |                           |                 |                    | 2                   |                |                     |               |
| MPPT Quantity /                     | 1/1                       | 1/1             | 1/1                | 1/1                 | 1/1            | 1/1                 | 1/2           |
| The Number of Input Strings Per MPI | рТ                        |                 |                    |                     |                |                     |               |
| AC Output                           |                           |                 |                    |                     |                |                     |               |
| Rated Power (kW)                    | 3                         | 3.68            | 4                  | 4.6                 | 5              | 6                   | 8             |
| Rated Current Output to Grid (A)    | 13                        | 16              | 17.4               | 20                  | 21.7           | 26                  | 35            |
| Nominal Voltage/Range(V)            |                           |                 |                    | 230/176~270         |                |                     |               |
| Frequency (Hz)                      |                           |                 |                    | 50/60               |                |                     |               |
| Power Factor                        |                           |                 | 1(0                | 8 leading-0.8 laggi | ng)            |                     |               |
| THDi                                |                           |                 |                    | <3%                 |                |                     |               |
| Grid Type                           |                           |                 |                    | L+N+PE              |                |                     |               |
| Battery Data                        |                           |                 |                    |                     |                |                     |               |
| Battery Voltage Range(V)            |                           |                 |                    | 40~58               |                |                     |               |
| Max. Charging Voltage(V)            |                           |                 |                    | 58                  |                |                     |               |
| Max. Charge/Discharge Current(A)    | 60/60                     | 72/72           | 80/80              | 92/92               | 100/100        | 120/120             | 160/160       |
| Communication Interface             |                           |                 |                    | CAN                 |                |                     |               |
| EPS Output                          |                           |                 |                    |                     |                |                     |               |
| Rated Power (kW)                    | 3.68                      | 3.6             | 4                  | 4.6                 | 5              | 6                   | 8             |
| Rated Voltage(V)                    |                           |                 |                    | 230                 |                |                     |               |
| Rated AC Current Output to Grid (A  | ) 13                      | 16              | 17.4               | 20                  | 21.7           | 26                  | 35            |
| Rated Frequency(Hz)                 |                           |                 |                    | 50/60               |                |                     |               |
| Automatic Switchover Time(ms)       |                           |                 |                    | <10                 |                |                     |               |
| THDu                                |                           |                 |                    | <2%                 |                |                     |               |
| Overload Capacity                   |                           |                 | 100%,              | 60s/120%, 30s/150   | 0%, 10s        |                     |               |
| General Parameters                  |                           |                 |                    |                     |                |                     |               |
| Scalability                         |                           |                 | Max                | <. 4 systems in par | allel          |                     |               |
| Max. Efficiency                     |                           |                 |                    | 98%                 |                |                     |               |
| Europe Efficiency                   |                           |                 |                    | 97%                 |                |                     |               |
| Mppt Efficiency                     |                           |                 |                    | 99.9%               |                |                     |               |
| IP Rating                           |                           |                 |                    | IP65                |                |                     |               |
| Operation Temperature               |                           |                 |                    | -25~60°C            |                |                     |               |
| Cooling                             |                           |                 |                    | Natural             |                |                     |               |
| Relative Humidity                   |                           |                 | 0~0                | 95% (non-condens    | ing)           |                     |               |
| Max. Altitude                       |                           |                 |                    | 4000m / 13123ft     |                |                     |               |
| Dimensions(W*D*H)                   |                           |                 |                    | 454.5*200*467mm     |                |                     | 467*200*484mm |
|                                     |                           |                 |                    | 8*7.8*18.3in        |                |                     | 8.3*7.8*19in  |
| Weight                              |                           |                 |                    | 18kg / 40lb         |                |                     | 20kg / 44lb   |
| Topology                            |                           |                 |                    | Non-isolated        |                |                     |               |
| Self-consumption At Night (W)       |                           |                 |                    | <20                 |                |                     |               |

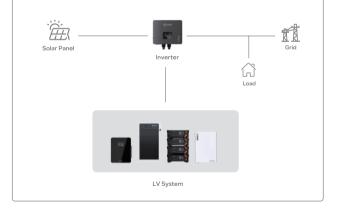
## Flex LV-EU 01G

## With Generator Input LV Single-phase Hybrid Inverter

**Optimized Heat Distribution:** Enhanced hardware upgrades optimize heat distribution, effectively minimizing overall heat generation.

**Expanded Power Segments**: New power options ranging from 3 to 6 kW deliver high capacity in a compact, space-saving design.


Advanced PV Input Capacity: Each PV input supports up to 16A, with the system allowing for PV power oversizing up to 1.5 times the rated model power.


#### User-Friendly Display:

A high-resolution color screen ensures more convenient and intuitive operation.



#### Product Details





#### Application Scenario





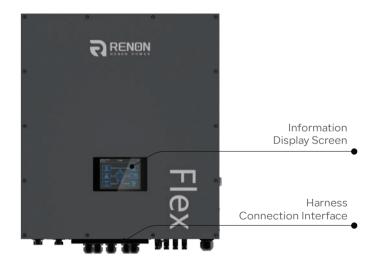


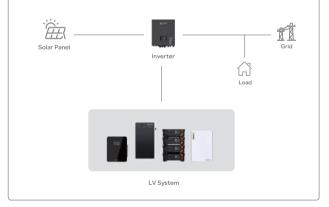
## System Layout 📃

| Model                                              | R-IFL03-EU01G | R-IFL03a-EU01G | R-IFL04-EU01G | R-IFL04a-EU01G | R-IFL05-EU01G | R-IFL06-EU01G |
|----------------------------------------------------|---------------|----------------|---------------|----------------|---------------|---------------|
| PV Input                                           |               |                |               |                |               |               |
| Max. Power (kW)                                    | 4.5           | 5.4            | 6             | 6.9            | 7.5           | 9             |
| Start-up Voltage (V)                               |               |                |               | 100            |               |               |
| Max.DC Voltage (V)                                 |               |                |               | 550            |               |               |
| MPPT Voltage Range/rated Voltage                   | (V)           |                | 80~           | 500/360        |               |               |
| PV/(Isc) (A)                                       |               |                | 2             | 24/24          |               |               |
| Max. Input Current of Each Compor                  | nent (A)      |                | -             | 16/16          |               |               |
| No. of MPPT                                        |               |                |               | 2              |               |               |
| No.of Strings per MPPT Tracker                     |               |                |               | 1/1            |               |               |
| AC output                                          |               |                |               |                |               |               |
| Rated Output Power (kVA/kW)                        | 3/3           | 3.68/3.68      | 4/4           | 4.6/4.6        | 5/5           | 6/6           |
| Max Output Power (kVA)                             | 3.3           | 3.68           | 4.4           | 4.6            | 5             | 6.6           |
| Max. Output Current (A)                            | 14.3          | 16             | 19.1          | 20             | 21.7          | 28.7          |
| Grid Voltage/range (Vac)                           |               |                | 230/          | 176 ~ 270      |               |               |
| Rate Grid Frequency (Hz)                           |               |                | 5             | 50/60          |               |               |
| Power Factor                                       |               |                | 1(0.8leadir   | ng0.8lagging)  |               |               |
| THDi                                               |               |                |               | < 3%           |               |               |
| AC Grid Type                                       |               |                | L+            | N+PE           |               |               |
| Battery Data                                       |               |                |               |                |               |               |
| Battery Voltage Range (V)                          |               |                | 4             | i0-58          |               |               |
| Max. Charging Voltage (V)                          |               |                |               | 58             |               |               |
| Max. Charge/discharge Current (A)                  | 60/60         | 72/72          | 80/80         | 92/92          | 100/100       | 120/120       |
| Communication Interface                            |               |                | CA            | AN/485         |               |               |
| Emergency Power Output                             |               |                |               |                |               |               |
| Rated Power (kVA/kW)                               | 3/3           | 3.68/3.68      | 4/4           | 4.6/4.6        | 5/5           | 6/6           |
| Rated Output Voltage (Vac)                         |               |                |               | 230            |               |               |
| Rated Output Current (A)                           | 13            | 16             | 17.4          | 20             | 21.7          | 26            |
| Rated Output Frequency (Hz)                        |               |                | 5             | 50/60          |               |               |
| Automatic Switchover Time (ms)                     |               |                |               | ≤10            |               |               |
| THDu                                               |               |                |               | <2%            |               |               |
| General Parameters                                 |               |                |               | 0/0/           |               |               |
| Battery Chage/dischage Efficiency                  |               |                |               | 96%            |               |               |
| Max. Efficiency                                    |               |                |               | 97.2%          |               |               |
| Europe Efficiency                                  |               |                |               | 97%            |               |               |
| MPPT Efficiency                                    |               |                |               | 99.9%          |               |               |
| Ingress Protection                                 |               |                |               | IP65           |               |               |
| Noise Emission (dB)                                |               |                |               | <35            |               |               |
| Operation Temperature (°C)                         |               |                | -2            | 5~60           |               |               |
| Cooling                                            |               |                |               | latural        |               |               |
| Relative Humidity                                  |               |                | 0~95% (No     | on-condensing) |               |               |
| Max. Altitude                                      |               |                | 4000          | m / 13123ft    |               |               |
| Dimensions (W*D*H)                                 |               |                | 455*2         | 15*385mm       |               |               |
| Net Weight (kg)                                    |               |                |               | 20.7           |               |               |
| Standby loss (W)                                   |               |                |               | <15            |               |               |
| Communication interface<br>RS485/Wifi/GPRS/CAN/DRM |               |                | Yes/Opt/      | /Opt/Yes/Yes   |               |               |

# Flex LV-EU 03

## LV Three-phase Hybrid Inverter

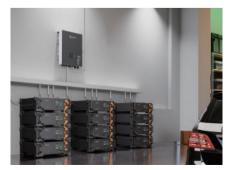

**Robust and Reliable Performance:** The Flex LV-EU 03 is IP65 rated for waterproof and dustproof protection, ensuring stable operation indoors and outdoors. It supports 150% unbalanced load for reliable output under high load. Built-in WiFi allows remote monitoring via an app.


**High Efficiency and Intelligent Management:** With a maximum PV input current of 26A, the Flex LV-EU 03 optimizes solar resource use and system efficiency. Dual outputs enable smart load management, and user-adjustable charging current allows for performance optimization.

Advanced Connectivity and Expandability: The Flex LV-EU 03 features an RS485 port for seamless integration with battery management systems (BMS). It supports parallel operation of up to six units for scalable expansion. Robust construction and easy maintenance enhance reliability and reduce costs.



### Product Details






### Application Scenario







## System Layout

| Model                                      |                              |
|--------------------------------------------|------------------------------|
| Inverter Model IFL12: R-IFL12-E            | :U03 IFL15:R-IFL15-EU03      |
| Max. PV Input Power(kW)                    | IFL12: 16 IFL15: 22.5        |
| Rated Output Power(kW)                     | IFL12: 12 IFL15: 15          |
| Max. Charging Power(kW)                    | IFL12: 12 IFL15: 15          |
| Grid-tie Operation - PV Input (DC)         |                              |
| Nominal DC Voltage / Max. DC Voltage(Vd    | c) 720 / 1000                |
|                                            | /dc) 320/350                 |
| MPP Voltage Range(Vdc)                     | 350 ~ 950                    |
| Number of MPP Trackers / Max. Input Cur    | rent(A) 2 / A: 26, B: 26     |
| Number of Strings Per MPP Tracker          | A: 2, B: 2                   |
| Grid-tie Operation - Grid Output (AC)      |                              |
| Nominal Output Voltage(Vac)                | 230 (P-N) / 400 (P-P)        |
| Output Voltage Range(Vac)                  | 184 ~ 265(per phase)         |
| Nominal Output Current(A) IFL12:           | 21.7 / IFL15:17.4(per phase) |
| Power Factor Range                         | 0.9 lag ~ 0.9 lead           |
| Grid-tie Operation - Efficiency            |                              |
| Max. Conversion Efficiency (DC/AC)         | >96%                         |
| European Efficiency@ Vnominal              | >95%                         |
| Off-grid Operation - AC Input              |                              |
| AC Start-up Voltage / Auto Restart Voltage | e(Vac) 120 ~ 140 / 180       |
| Acceptable Input Voltage Range(Vac)        | 170 ~ 290 (per phase)        |
| Max. AC Input Current(A)                   | 40                           |
| Off-grid Operation - PV Input (DC)         |                              |
| Max. DC Power(kW)                          | IFL12: 16 IFL15: 22.5        |
| Max. DC Voltage(Vdc)                       | 1000                         |
| MPP Voltage Range(Vdc)                     | 350 ~ 950                    |
| Number of MPP Trackers / Max. Input Cur    | rent(A) 2 / A: 26, B: 26     |
| Number of Strings Per MPP Tracker          | A: 2, B: 2                   |
| Off-grid Operation - Battery Mode Out      | put (AC)                     |
| Nominal Output Voltage(Vac)                | 230 (P-N) / 400 (P-P)        |
| Output Waveform                            | Pure sine wave               |
| Efficiency (DC to AC)                      | 91%                          |

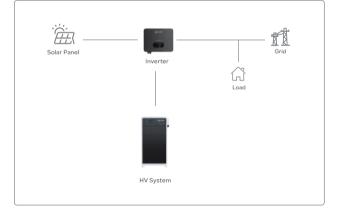
| Hybrid Operation - PV Inp      | ut (DC)                                   |
|--------------------------------|-------------------------------------------|
| Max. DC Voltage(Vdc)           | 1000                                      |
| Start-up Voltage / Initial Fee | eding Voltage(Vdc) 320 / 350              |
| MPP Voltage Range(Vdc)         | 350 ~ 950                                 |
| Number of MPP Trackers / N     | Max. Input Current(A) 2 / A: 26, B: 26    |
| Number of Strings Per MPP      | Tracker A: 2, B: 2                        |
| Hybrid Operation - Grid O      | utput (AC)                                |
| Nominal Output Voltage(Va      | c) 230(P-N) / 400(P-P)                    |
| Output Voltage Range(Vac)      | 184 ~ 265 (per phase)                     |
| Nominal Output Current(A)      | IFL12: 17.4 / IFL15: 21.7 (per phase)     |
| Hybrid Operation - AC Inp      | ut                                        |
| AC Start-up Voltage / Auto I   | Restart Voltage(Vac) 120 ~ 140 / 180      |
| Acceptable Input Voltage Ra    | ange(Vac) 170 ~ 290 (per phase)           |
| Max. AC Input Current(A)       | 40                                        |
| Hybrid Operation - Batter      | y Mode Output (AC)                        |
| Nominal Output Voltage(Va      | c) 230 (P-N) / 400 (P-P)                  |
| Efficiency (DC to AC)          | 91%                                       |
| Hybrid Operation - Batter      | y & Charger                               |
| Battery Voltage Range(Vdc)     | 40 ~ 62                                   |
| Max. Charging Current(A)       | IFL12: 250 IFL15: 300                     |
| General Parameters             |                                           |
| Scalability                    | Max. 6 systems in parallel                |
| Dimension(W*D*H)               | 660*255*750mm / 26*10*30in                |
| Net Weight                     | IFL12: 75kg / 165lb IFL15: 78kg / 172lb   |
| Communication Port             | RS-232, RS-485, USB, CAN, Wi-Fi           |
| Intelligent Slot               | Optional for SNMP and Modbus cards        |
| Humidity                       | 0 ~ 100% RH (Non-condensing)              |
| Operating Temperature          | -25 to 60°C (> 45°C power derating)       |
| Max. Altitude                  | 4000m / 13123ft                           |
| IP Rating                      | IP65                                      |
| Safety II                      | EC 62109, IEC 62116, IEC 61727, IEC 61683 |
| Grid Connection Standard       | NRS097-2-1:2017, VDE-AR-N4105             |
|                                |                                           |

## Flex HV-EU 03

## HV Three-phase Hybrid Inverter

**Integrated Design:** The Flex HV-EU 03 series includes a built-in Renon Flex inverter, eliminating the need for third-party inverters. Users can monitor and control the system via the Renon Smart app, simplifying the user experience.

**High Efficiency and Scalability:** The series offers high efficiency with reduced transmission losses and supports up to 10 units in parallel, allowing easy expansion. The integrated management system provides insights and predictive maintenance.


**Easy Installation and Advanced Control:** Designed for simple installation, the Flex HV-EU 03 series supports stackable modules. It features remote firmware upgrades, customizable charging profiles, and supports VPP and FFR functions.



#### Product Details



#### System Layout

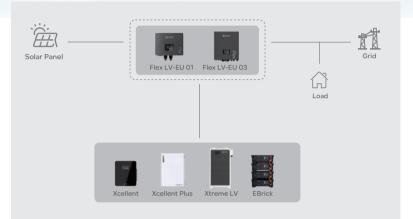


### Application Scenario





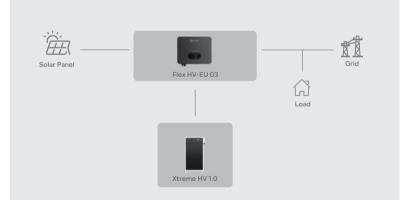



| R-IFH05-EU03<br>7.5 | R-IFH06-EU03<br>9 | R-IFH08-EU03<br>12                                                                                                                                                                                                                                     | R-IFH10-EU03<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R-IFH10-A-EU03                                         |
|---------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 7.5                 | 9                 | 12                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75                                                     |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                     |
|                     |                   | 1000                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 160 ~ 950                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 600                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 160                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 2                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 1                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 36(18/18)                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 46(23/23)                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| 55                  | 66                | 8.8                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                     |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                     |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.2                                                   |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.2                                                   |
| 1.2                 |                   | -                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.4                                                   |
|                     | 3/ IN / I         |                                                                                                                                                                                                                                                        | 0;20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     | 0                 |                                                                                                                                                                                                                                                        | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |
|                     |                   | <3%                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| 10                  | 12                | 16                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                     |
| 15.2                | 18.2              | 24.3                                                                                                                                                                                                                                                   | 28.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.4                                                   |
|                     | 3/N/P             | E, 220 / 380, 230 / 400                                                                                                                                                                                                                                | D; ± 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                        |
|                     |                   | 50 / 60; ± 5                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 160 ~ 700                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 30/30                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | CAN                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| 5                   | 6                 | 8                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                     |
| 5                   |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                     |
|                     | 3710              |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| 76                  | 01                |                                                                                                                                                                                                                                                        | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.2                                                   |
| 7.0                 | 7.1               |                                                                                                                                                                                                                                                        | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.2                                                   |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
| 75.60               | 0.60              |                                                                                                                                                                                                                                                        | 1E 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1E 60                                                  |
| 7.5, 00             | 7,00              | 12,00                                                                                                                                                                                                                                                  | 15,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15, 60                                                 |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 98.00%                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 97.70%                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 97.60%                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     | N                 | lax. 5 systems in parall                                                                                                                                                                                                                               | el                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     | 320               |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     | DC //             |                                                                                                                                                                                                                                                        | onal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |
|                     | 1(34(             |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     |                   | 5 years                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |
|                     | 15.2              | 5 6   7.6 9.1   7.2 8.7   3/N/1 0   10 12   15.2 18.2   3/N/P   3/N/P   7.5 6   7.5, 60 9, 60   7.5, 60 9, 60   8.7 10   7.5, 60 9, 60   7.5, 60 9, 60   7.5, 60 9, 60   7.5, 60 9, 60   7.5, 60 9, 60   7.5, 60 9, 60   7.5, 60 9, 60   7.5, 60 9, 60 | 36(18/18)   46(23/23)   5.5 6.6   5.5 6.6   7.6 9.1   7.2 8.7   3/ N / PE,220 / 380, 230 / 40   5.5 0.8 leading - 0.8 laggin   - -   3/ N / PE,220 / 380, 230 / 40   - -   10 12   15.2 18.2   24.3   3/ N / PE,220 / 380, 230 / 40   - -   10 12   16 5.0 / 60; ± 5   - -   10 12   16.0 - 700 -   30 / 30 -   - -   5.0 / 60; ± 5 -   5.0 / 60; ± 5 -   5.0 / 60; ± 5 -   5.0 / 60; ± 5 -   5.0 / 60; ± 5 -   5.0 / 60; ± 5 -   5.0 / 60; ± 5 -   5.0 / 60; ± 5 -   5.0 / 60; ± 5 -   7.6 9.1 12.2   7.5, 60 9.60 12.60 <td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

## Solution

### LV Solution

## Low Voltage Energy Storage for Everyday Needs


Residential LV solutions offer dependable and affordable energy storage for everyday household needs. Ideal for small to medium-sized homes, these low voltage systems provide continuous power supply, enhancing energy independence and reducing electricity costs.



### **HV** Solution

## High Voltage Energy Storage for Modern Homes

Residential HV solutions deliver robust and reliable energy storage, designed for larger homes with higher energy demands. These high voltage systems provide efficient power management, ensuring your home remains powered through peak usage times and outages.





## **Renon** Smart

**Cloud Energy Management** 

## We're Using Smart Power to Simplify Your Life.

Renon Smart is a comprehensive device management and monitoring solution for distributors, installers, and end users. Our software and app are ideal for managing large-scale-power station

Our software and app are ideal for managing large-scale-power station and commercial and industrial energy storage systems.



### Features



## Instant Clarity with Remote Data Monitoring and Analytics

Remote data monitoring, automatic curve generation, and big data analytics management make the product operation status clear at a glance.



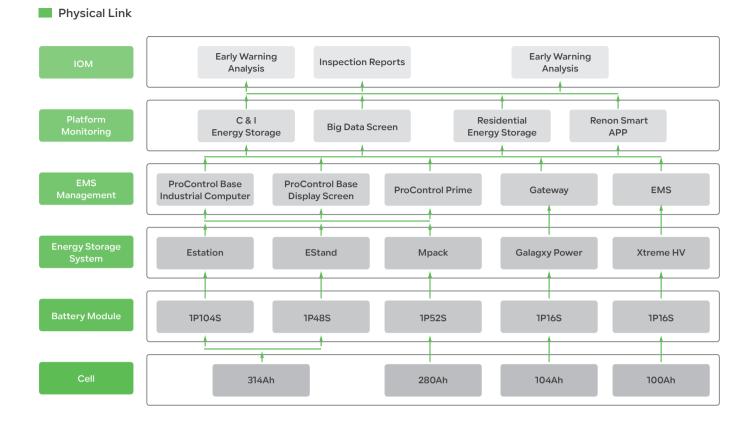
#### Enhanced Security with Distributed Architecture and Data Encryption

Distributed architecture deployment and data security encryption ensure that cloud data is more secure and reliable.

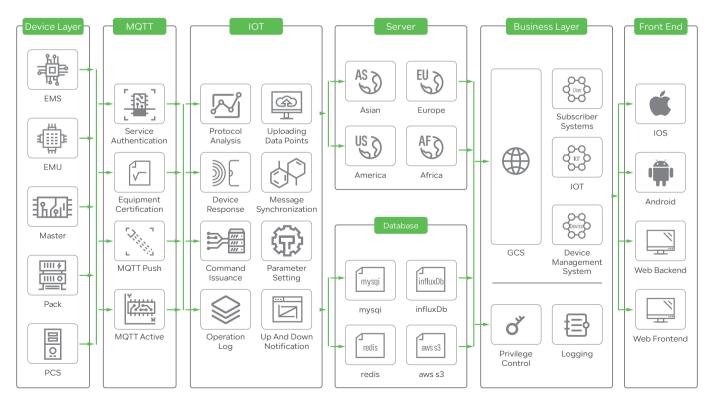


#### Boost Customer Satisfaction with Remote Firmware Upgrades

Remote firmware upgrading and intelligent operation and maintenance report generation effectively improve customer satisfaction.



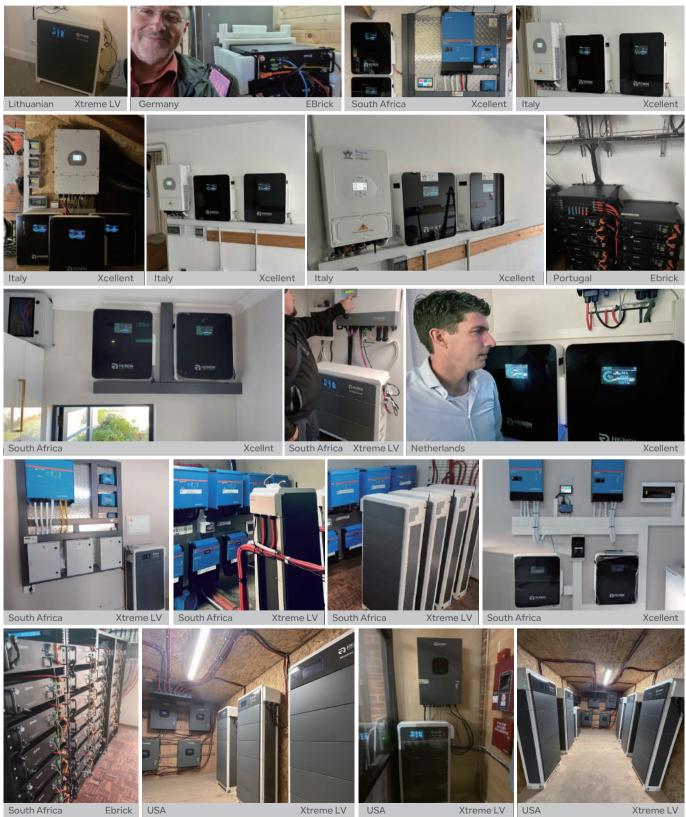

## Optimized Channel Construction with a Six-Level Distribution System


The six-level distribution system, from the brand owner to end-users, is more conducive to robust product channel construction.

### Interface Showcase






### Platform Architecture



## **Installation** Cases

"As an installer, I appreciate the reliability and efficiency of Renon Power's solutions. Their technical support team is always available to assist with any questions or challenges, ensuring a smooth installation process from start to finish."

- Samantha J., Electrical Contractor



South Africa

Xtreme LV USA

RENON - Make Renewable Energy Within Reach

USA Ebrick

## **Renon** Exhibition

At Renon Power, our team is our greatest asset. We are a diverse group of passionate professionals, united by a shared mission to make green power within reach.

### **RIMINI Expo**

Italy



#### Intersolar 2025 San Diego

**The United States** 



### PV EXPO 2025 Tokyo

Japan



RE+ 2024

**The United States** 



### The Smarter E 2024

Germany



## Note Book

| PROVIDE       |
|---------------|
| INNOVATIVE,   |
| RELIABLE, AND |
| AFFORDABLE    |
| ENERGY        |
| STORAGE       |
| SOLUTIONS TO  |
| CUSTOMERS     |
| WORLDWIDE.    |
|               |

| C ELNEM<br>Mare train |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
| C.                    |  |
|                       |  |
| Report                |  |
| 2                     |  |
| - REMARK              |  |
|                       |  |
| Kalus Au              |  |
|                       |  |
| · · · · · ·           |  |
|                       |  |
|                       |  |

## Renon Power Technology Inc.

5900 Balcones Drive Suite 100, Austin, TX 78731 USA

## Renon Power Solutions Sp.z o.o.

ul. ELBLĄSKA 1, 93-459, ŁÓDŹ, POLAND

## **Renon Power Technology B.V.**

Rietbaan 10, 2908 LP Capelle aan den IJssel

## Renon Power 株式会社

東京都中央区日本橋箱崎町20-5 VORT箱崎5F

## 瑞智新能源(惠州)有限公司

广东省惠州市惠阳区三和街道下桥背康易工业园





Linkedin



Whatsapp

Website